Superconducting qubit to optical photon transduction

Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-12, Vol.588 (7839), p.599-603
Hauptverfasser: Mirhosseini, Mohammad, Sipahigil, Alp, Kalaee, Mahmoud, Painter, Oskar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conversion of electrical and optical signals lies at the foundation of the global internet. Such converters are used to extend the reach of long-haul fibre-optic communication systems and within data centres for high-speed optical networking of computers. Likewise, coherent microwave-to-optical conversion of single photons would enable the exchange of quantum states between remotely connected superconducting quantum processors 1 . Despite the prospects of quantum networking 2 , maintaining the fragile quantum state in such a conversion process with superconducting qubits has not yet been achieved. Here we demonstrate the conversion of a microwave-frequency excitation of a transmon—a type of superconducting qubit—into an optical photon. We achieve this by using an intermediary nanomechanical resonator that converts the electrical excitation of the qubit into a single phonon by means of a piezoelectric interaction 3 and subsequently converts the phonon to an optical photon by means of radiation pressure 4 . We demonstrate optical photon generation from the qubit by recording quantum Rabi oscillations of the qubit through single-photon detection of the emitted light over an optical fibre. With proposed improvements in the device and external measurement set-up, such quantum transducers might be used to realize new hybrid quantum networks 2 , 5 and, ultimately, distributed quantum computers 6 , 7 . A chip-scale platform is developed for the conversion of a single microwave excitation of a superconducting qubit into optical photons, with potential uses in quantum computer networks.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-020-3038-6