Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets

Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2013-06, Vol.25 (3), p.527-542
Hauptverfasser: Hunter, Susan R, Pasupathy, Raghu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 3
container_start_page 527
container_title INFORMS journal on computing
container_volume 25
creator Hunter, Susan R
Pasupathy, Raghu
description Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximizes the rate at which the probability of false selection tends to zero. Since the optimal allocation is the result of a concave maximization problem, its solution is particularly easy to obtain in contexts where the underlying distributions are known or can be assumed. We provide a consistent estimator for the optimal allocation and a corresponding sequential algorithm fit for implementation. Various numerical examples demonstrate how the proposed allocation differs from competing algorithms.
doi_str_mv 10.1287/ijoc.1120.0519
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracgeneralonefile_A339255148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A339255148</galeid><sourcerecordid>A339255148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-f6b8b93257acbd07912802c1a281a311e90535e469aa2cccd73fa136bc48dcbb3</originalsourceid><addsrcrecordid>eNqFkUtr3DAUhU1poWmSbdaGbuuJHpYtLcPQtIWBLKZddSGuZdnRYEtTXZmS_PrKSSAtDBQJvfjOlY5OUVxRsqFMttfuEMyGUkY2RFD1pjijgjWVEEy-zWuiaKWkaN4XHxAPhJCa1-qs-Hl3TG6GqdzDfJycH8sd_MZyCLHcp2DuAZMzME0P5TZ4TBGct325d_MyQXLBl0969_i8yf3WeZdsubcJL4p3A0xoL1_m8-LH7efv26_V7u7Lt-3NrjKCylQNTSc7xZlowXQ9aVV2Q5ihwCQFTqlVRHBh60YBMGNM3_IBKG86U8vedB0_Lz4-1z3G8GuxmPQhLNHnKzWtmZCtkrx9pUaYrHZ-CNmNmR0afcO5YkLQWmaqOkGN1tsIU_B2cPn4H35zgs-tt7MzJwWf_hJ0C-YPxTygG-8TjrAgnqxvYkCMdtDHmPOKD5oSvcau19j1GrteY381sL4lzvg__g_lxq40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1425879837</pqid></control><display><type>article</type><title>Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><creator>Hunter, Susan R ; Pasupathy, Raghu</creator><creatorcontrib>Hunter, Susan R ; Pasupathy, Raghu</creatorcontrib><description>Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximizes the rate at which the probability of false selection tends to zero. Since the optimal allocation is the result of a concave maximization problem, its solution is particularly easy to obtain in contexts where the underlying distributions are known or can be assumed. We provide a consistent estimator for the optimal allocation and a corresponding sequential algorithm fit for implementation. Various numerical examples demonstrate how the proposed allocation differs from competing algorithms.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.1120.0519</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; constrained simulation optimization ; Finite element analysis ; Mathematical optimization ; Methods ; optimal allocation ; ranking and selection ; Simulation ; Simulation methods ; Stochastic models ; Studies</subject><ispartof>INFORMS journal on computing, 2013-06, Vol.25 (3), p.527-542</ispartof><rights>COPYRIGHT 2013 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Summer 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-f6b8b93257acbd07912802c1a281a311e90535e469aa2cccd73fa136bc48dcbb3</citedby><cites>FETCH-LOGICAL-c518t-f6b8b93257acbd07912802c1a281a311e90535e469aa2cccd73fa136bc48dcbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.1120.0519$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3690,27923,27924,62615</link.rule.ids></links><search><creatorcontrib>Hunter, Susan R</creatorcontrib><creatorcontrib>Pasupathy, Raghu</creatorcontrib><title>Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets</title><title>INFORMS journal on computing</title><description>Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximizes the rate at which the probability of false selection tends to zero. Since the optimal allocation is the result of a concave maximization problem, its solution is particularly easy to obtain in contexts where the underlying distributions are known or can be assumed. We provide a consistent estimator for the optimal allocation and a corresponding sequential algorithm fit for implementation. Various numerical examples demonstrate how the proposed allocation differs from competing algorithms.</description><subject>Algorithms</subject><subject>constrained simulation optimization</subject><subject>Finite element analysis</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>optimal allocation</subject><subject>ranking and selection</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkUtr3DAUhU1poWmSbdaGbuuJHpYtLcPQtIWBLKZddSGuZdnRYEtTXZmS_PrKSSAtDBQJvfjOlY5OUVxRsqFMttfuEMyGUkY2RFD1pjijgjWVEEy-zWuiaKWkaN4XHxAPhJCa1-qs-Hl3TG6GqdzDfJycH8sd_MZyCLHcp2DuAZMzME0P5TZ4TBGct325d_MyQXLBl0969_i8yf3WeZdsubcJL4p3A0xoL1_m8-LH7efv26_V7u7Lt-3NrjKCylQNTSc7xZlowXQ9aVV2Q5ihwCQFTqlVRHBh60YBMGNM3_IBKG86U8vedB0_Lz4-1z3G8GuxmPQhLNHnKzWtmZCtkrx9pUaYrHZ-CNmNmR0afcO5YkLQWmaqOkGN1tsIU_B2cPn4H35zgs-tt7MzJwWf_hJ0C-YPxTygG-8TjrAgnqxvYkCMdtDHmPOKD5oSvcau19j1GrteY381sL4lzvg__g_lxq40</recordid><startdate>20130622</startdate><enddate>20130622</enddate><creator>Hunter, Susan R</creator><creator>Pasupathy, Raghu</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope></search><sort><creationdate>20130622</creationdate><title>Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets</title><author>Hunter, Susan R ; Pasupathy, Raghu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-f6b8b93257acbd07912802c1a281a311e90535e469aa2cccd73fa136bc48dcbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>constrained simulation optimization</topic><topic>Finite element analysis</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>optimal allocation</topic><topic>ranking and selection</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, Susan R</creatorcontrib><creatorcontrib>Pasupathy, Raghu</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, Susan R</au><au>Pasupathy, Raghu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets</atitle><jtitle>INFORMS journal on computing</jtitle><date>2013-06-22</date><risdate>2013</risdate><volume>25</volume><issue>3</issue><spage>527</spage><epage>542</epage><pages>527-542</pages><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximizes the rate at which the probability of false selection tends to zero. Since the optimal allocation is the result of a concave maximization problem, its solution is particularly easy to obtain in contexts where the underlying distributions are known or can be assumed. We provide a consistent estimator for the optimal allocation and a corresponding sequential algorithm fit for implementation. Various numerical examples demonstrate how the proposed allocation differs from competing algorithms.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/ijoc.1120.0519</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1091-9856
ispartof INFORMS journal on computing, 2013-06, Vol.25 (3), p.527-542
issn 1091-9856
1526-5528
1091-9856
language eng
recordid cdi_gale_infotracgeneralonefile_A339255148
source INFORMS PubsOnLine; Business Source Complete
subjects Algorithms
constrained simulation optimization
Finite element analysis
Mathematical optimization
Methods
optimal allocation
ranking and selection
Simulation
Simulation methods
Stochastic models
Studies
title Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Sampling%20Laws%20for%20Stochastically%20Constrained%20Simulation%20Optimization%20on%20Finite%20Sets&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Hunter,%20Susan%20R&rft.date=2013-06-22&rft.volume=25&rft.issue=3&rft.spage=527&rft.epage=542&rft.pages=527-542&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.1120.0519&rft_dat=%3Cgale_proqu%3EA339255148%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1425879837&rft_id=info:pmid/&rft_galeid=A339255148&rfr_iscdi=true