Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets
Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximi...
Gespeichert in:
Veröffentlicht in: | INFORMS journal on computing 2013-06, Vol.25 (3), p.527-542 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximizes the rate at which the probability of false selection tends to zero. Since the optimal allocation is the result of a concave maximization problem, its solution is particularly easy to obtain in contexts where the underlying distributions are known or can be assumed. We provide a consistent estimator for the optimal allocation and a corresponding sequential algorithm fit for implementation. Various numerical examples demonstrate how the proposed allocation differs from competing algorithms. |
---|---|
ISSN: | 1091-9856 1526-5528 1091-9856 |
DOI: | 10.1287/ijoc.1120.0519 |