Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets

Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2013-06, Vol.25 (3), p.527-542
Hauptverfasser: Hunter, Susan R, Pasupathy, Raghu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the context of selecting an optimal system from among a finite set of competing systems, based on a "stochastic" objective function and subject to multiple "stochastic" constraints. In this context, we characterize the asymptotically optimal sample allocation that maximizes the rate at which the probability of false selection tends to zero. Since the optimal allocation is the result of a concave maximization problem, its solution is particularly easy to obtain in contexts where the underlying distributions are known or can be assumed. We provide a consistent estimator for the optimal allocation and a corresponding sequential algorithm fit for implementation. Various numerical examples demonstrate how the proposed allocation differs from competing algorithms.
ISSN:1091-9856
1526-5528
1091-9856
DOI:10.1287/ijoc.1120.0519