Comparison of Dasymetric Mapping Techniques for Small-Area Population Estimates
Dasymetric mapping techniques can be employed to estimate population characteristics of small areas that do not correspond to census enumeration areas. Land cover has been the most widely used source of ancillary data in dasymetric mapping. The current research examines the performance of alternativ...
Gespeichert in:
Veröffentlicht in: | Cartography and geographic information science 2010-07, Vol.37 (3), p.199-214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dasymetric mapping techniques can be employed to estimate population characteristics of small areas that do not correspond to census enumeration areas. Land cover has been the most widely used source of ancillary data in dasymetric mapping. The current research examines the performance of alternative sources of ancillary data, including imperviousness, road networks, and nighttime lights. Nationally available datasets were used in the analysis to allow for replicability. The performance of the techniques used to examine these sources was compared to areal weighting and traditional land cover techniques. Four states were used in the analysis, representing a range of different geographic regions: Connecticut, New Mexico, Oregon, and South Carolina. Ancillary data sources were used to estimate census block group population counts using census tracts as source zones, and the results were compared to the known block group population counts. Results indicate that the performance of dasymetric methods varies substantially among study areas, and no single technique consistently outperforms all others. The three best techniques are imperviousness with values greater than 75 percent removed, imperviousness with values greater than 60 percent removed, and land cover. Total imperviousness and roads perform slightly worse, with nighttime lights performing the worst compared to all other ancillary data types. All techniques performed better than areal weighting. |
---|---|
ISSN: | 1523-0406 1545-0465 |
DOI: | 10.1559/152304010792194985 |