An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm
A real-coded genetic algorithm is employed to develop a search approach for locating the noncircular critical slip surface in slope stability analyses. Limit equilibrium methods and the finite-element-based method are incorporated with the proposed search approach to calculate the factor of safety....
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2010-07, Vol.47 (7), p.806-820 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A real-coded genetic algorithm is employed to develop a search approach for locating the noncircular critical slip surface in slope stability analyses. Limit equilibrium methods and the finite-element-based method are incorporated with the proposed search approach to calculate the factor of safety. Geometrical and kinematical compatibility constraints are established based on the features of slope problems to prevent slip surfaces from being unreasonable. A dynamic bound technique is presented to improve the search performance with more effective exploration within the solution domain. A number of examples are investigated that demonstrate the proposed search approach to be efficient in yielding accurate solutions to practical slope stability problems. The proposed search approach is stable and highly correlated with the results of independent analyses. Furthermore, this paper demonstrates the successful application of a real-coded genetic algorithm to noncircular critical slip surface search problems. |
---|---|
ISSN: | 0008-3674 1208-6010 |
DOI: | 10.1139/T09-124 |