Limit Property of an L[sup.2]-Normalized Solution for an L[sup.2]-Subcritical Kirchhoff-Type Equation with a Variable Exponent

This paper is concerned with the following L[sup.2] -subcritical Kirchhoff-type equation −(a+b∫R2|∇u|2dx[sup.s] )Δu+V(x)u=μu+β|u|[sup.2] u, x∈R[sup.2] , with ∫[sub.R2] |u|[sup.2] dx=1. We give a detailed analysis of the limit property of the L[sup.2] -normalized solution when exponent s tends toward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2024-09, Vol.13 (9)
Hauptverfasser: Zhu, Xincai, Wu, Hanxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the following L[sup.2] -subcritical Kirchhoff-type equation −(a+b∫R2|∇u|2dx[sup.s] )Δu+V(x)u=μu+β|u|[sup.2] u, x∈R[sup.2] , with ∫[sub.R2] |u|[sup.2] dx=1. We give a detailed analysis of the limit property of the L[sup.2] -normalized solution when exponent s tends toward 0 from the right (i.e., s↘0). Our research extends previous works, in which the authors have displayed the limit behavior of L[sup.2] -normalized solutions when s=1 as a↘0 or b↘0.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms13090571