Upper Bounds for Roots of $b$-Functions, following Kashiwara and Lichtin
By building on a method introduced by Kashiwara (Invent. Math. 38 (1976/77), 33–53) and refined by Lichtin (Ark. Mat. 27 (1989), 283–304), we give upper bounds for the roots of certain b -functions associated to a regular function f in terms of a log resolution of singularities. As applications, we...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2022-12, Vol.58 (4), p.693-712 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By building on a method introduced by Kashiwara (Invent. Math. 38 (1976/77), 33–53) and refined by Lichtin (Ark. Mat. 27 (1989), 283–304), we give upper bounds for the roots of certain b -functions associated to a regular function f in terms of a log resolution of singularities. As applications, we recover with more elementary methods a result of Budur and Saito (J. Algebraic Geom. 14 (2005), 269–282) describing the multiplier ideals of f in terms of the V -filtration of f and a result of the second-named author with Popa (Forum Math. Sigma 8 (2020), Paper No. e19, 41) giving a lower bound for the minimal exponent of f in terms of a log resolution. |
---|---|
ISSN: | 0034-5318 1663-4926 |
DOI: | 10.4171/prims/58-4-2 |