Upper Bounds for Roots of $b$-Functions, following Kashiwara and Lichtin

By building on a method introduced by Kashiwara (Invent. Math. 38 (1976/77), 33–53) and refined by Lichtin (Ark. Mat. 27 (1989), 283–304), we give upper bounds for the roots of certain b -functions associated to a regular function f in terms of a log resolution of singularities. As applications, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Research Institute for Mathematical Sciences 2022-12, Vol.58 (4), p.693-712
Hauptverfasser: Dirks, Bradley, Mustaţă, Mircea
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By building on a method introduced by Kashiwara (Invent. Math. 38 (1976/77), 33–53) and refined by Lichtin (Ark. Mat. 27 (1989), 283–304), we give upper bounds for the roots of certain b -functions associated to a regular function f in terms of a log resolution of singularities. As applications, we recover with more elementary methods a result of Budur and Saito (J. Algebraic Geom. 14 (2005), 269–282) describing the multiplier ideals of f in terms of the V -filtration of f and a result of the second-named author with Popa (Forum Math. Sigma 8 (2020), Paper No. e19, 41) giving a lower bound for the minimal exponent of f in terms of a log resolution.
ISSN:0034-5318
1663-4926
DOI:10.4171/prims/58-4-2