Dynamic Adsorption of As onto the Porous α-Fe[sub.2]O[sub.3]/Fe[sub.3]O[sub.4]/C Composite Prepared with Bamboo Bio-Template

Arsenic (As(V)), a highly toxic metalloid, is known to contaminate wastewater and groundwater and is difficult to degrade in nature. However, the development of highly efficient adsorbents, at a low cost for use in practical applications, remains highly challenging. Thus, to investigate the As(V) ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-06, Vol.14 (12)
Hauptverfasser: Peng, Yuqing, Li, Yanhong, Tang, Shen, Zhang, Lihao, Zhang, Jing, Zhao, Yao, Zhang, Xuehong, Zhu, Yinian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arsenic (As(V)), a highly toxic metalloid, is known to contaminate wastewater and groundwater and is difficult to degrade in nature. However, the development of highly efficient adsorbents, at a low cost for use in practical applications, remains highly challenging. Thus, to investigate the As(V) adsorption mechanism, a novel porous α-Fe[sub.2]O[sub.3]/Fe[sub.3]O[sub.4]/C composite (PC-Fe/C-B) was prepared, using bamboo side shoots as a bio-template, and the breakthrough performance of the PC-Fe/C-B composite-packed fixed-bed column in As(V) removal was evaluated, using simulated wastewater. The PC-Fe/C-B material accurately retained the hierarchical porous microstructure of the bamboo bio-templates, and the results demonstrated the great potential of PC-Fe/C-B composite, as an effective adsorbent for removing As(V) from wastewater, under the optimal experimental conditions of: influent flow 5.136 mL/min, pH 3, As(V) concentration 20 mg/L, adsorbent particle size < 0.149 mm, adsorption temperature 35 °C, PC-Fe/C-B dose 0.5 g, and breakthrough time 50 min (184 BV), with q[sub.e,exp] of 21.0 mg/g in the fixed-bed-column system. The CD-MUSIC model was effectively coupled with the transport model, using PHREEQC software, to simulate the reactive transportation of As(V) in the fixed-bed column and to predict the breakthrough curve for column adsorption.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14121848