Irradiation-Hardening Model of TiZrHfNbMo[sub.0.1] Refractory High-Entropy Alloys
In order to find more excellent structural materials resistant to radiation damage, high-entropy alloys (HEAs) have been developed due to their characteristics of limited point defect diffusion such as lattice distortion and slow diffusion. Specially, refractory high-entropy alloys (RHEAs) that can...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2024-04, Vol.26 (4) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to find more excellent structural materials resistant to radiation damage, high-entropy alloys (HEAs) have been developed due to their characteristics of limited point defect diffusion such as lattice distortion and slow diffusion. Specially, refractory high-entropy alloys (RHEAs) that can adapt to a high-temperature environment are badly needed. In this study, TiZrHfNbMo[sub.0.1] RHEAs are selected for irradiation and nanoindentation experiments. We combined the mechanistic model for the depth-dependent hardness of ion-irradiated metals and the introduction of the scale factor f to modify the irradiation-hardening model in order to better describe the nanoindentation indentation process in the irradiated layer. Finally, it can be found that, with the increase in irradiation dose, a more serious lattice distortion caused by a higher defect density limits the expansion of the plastic zone. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e26040340 |