Stabilization of Chromium : Method Development and Validation
The presence of Cr (VI) in drinking water is mainly caused by leaching of chromium-containing aquifer material into groundwater. In contrast to Cr (III), it has been classified as highly toxic. For this reason, the WHO recommends the implementation of separate guideline values, instead of the so far...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-04, Vol.12 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The presence of Cr (VI) in drinking water is mainly caused by leaching of chromium-containing aquifer material into groundwater. In contrast to Cr (III), it has been classified as highly toxic. For this reason, the WHO recommends the implementation of separate guideline values, instead of the so far used limit value of total chromium. The separate evaluation of Cr (VI) in raw water and during removal processes requires the Cr (VI) concentration to remain stable after sampling. In the presence of Fe (II), a stabilization of the samples is necessary to inhibit further reduction of Cr (VI) by Fe (II). In this study, two methods of Cr (VI) stabilization in Fe-(II)-containing water samples are investigated: Fe (II) oxidation by oxygen at high pH values in the presence of buffers and Fe (II) complexation by chelating agents. When adding hydrogen carbonate buffer, Cr (VI) recovery reached 100% at pH values of 10 to 12 in the presence of up to 3 mg L[sup.–1] Fe (II). Using hydrogen phosphate buffer, Cr (VI) recovery reached 100% only at pH 12 but for a Fe (II) concentration up to 6 mg L[sup.–1]. Ammonium buffer was found to be less suitable for Cr (VI) stabilization. The addition of EDTA and citrate resulted in low recovery of Cr (VI), whereas citrate was found to accelerate the Cr (VI) reduction. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w12040924 |