Machine Learning-Based Predictive Model to Assess Rheological Dynamics of Eco-Friendly Oils as Biolubricants Enriched with SiO[sub.2] Nanoparticles
Efficient machinery operation relies on the performance of high-quality lubricants. Currently, mineral oils of different grades are widely employed for lubricating machine components, but their environmental impact is a concern. Biolubricants are potential alternatives to mineral oils due to environ...
Gespeichert in:
Veröffentlicht in: | Lubricants 2024-03, Vol.12 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient machinery operation relies on the performance of high-quality lubricants. Currently, mineral oils of different grades are widely employed for lubricating machine components, but their environmental impact is a concern. Biolubricants are potential alternatives to mineral oils due to environmental factors. The present study focuses on assessing the rheological characteristics of SiO[sub.2] nanoparticle (NP)-enhanced ecofriendly biolubricants for near zero and high-temperature conditions. Pure neem oil, pure castor oil and a 50:50 blend of both oils were considered as the base oils. Nanobiolubricants with enhanced dispersion stability were prepared for varied concentrations of NPs using an ultrasonification method. Viscosity analysis was conducted using an MCR-92 rheometer, employing the Herschel Bulkley model to precisely characterize the viscosity behavior of bio-oils. Due to the fluid–solid interaction between SiO[sub.2] NPs and bio-oils, a crossover trend was observed in the flow curves generated for different base oils enriched with SiO[sub.2] NPs. For neem oil, a significant increase in viscosity was noted for 0.2 wt% of NPs. Using the multilayer perceptron (MLP) algorithm, an artificial neural network (ANN) model was developed to accurately predict the viscosity variations in nanobiolubricants. The accuracy of the predicted values was affirmed through experimental investigations at the considered nanoSiO[sub.2] weight concentrations. |
---|---|
ISSN: | 2075-4442 2075-4442 |
DOI: | 10.3390/lubricants12030092 |