Applications of Horadam Polynomials for Bazilevič and Iλ/I-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi Type Functions
In this study, we introduce a new class of normalized analytic and bi-univalent functions denoted by D[sub.Σ](δ,η,λ,t,r). These functions are connected to the Bazilevič functions and the λ-pseudo-starlike functions. We employ Sakaguchi Type Functions and Horadam polynomials in our survey. We establi...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2024-02, Vol.16 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we introduce a new class of normalized analytic and bi-univalent functions denoted by D[sub.Σ](δ,η,λ,t,r). These functions are connected to the Bazilevič functions and the λ-pseudo-starlike functions. We employ Sakaguchi Type Functions and Horadam polynomials in our survey. We establish the Fekete-Szegö inequality for the functions in D[sub.Σ](δ,η,λ,t,r) and derive upper bounds for the initial Taylor–Maclaurin coefficients |a[sub.2]| and |a[sub.3]|. Additionally, we establish connections between our results and previous research papers on this topic. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym16020218 |