Applications of Horadam Polynomials for Bazilevič and Iλ/I-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi Type Functions

In this study, we introduce a new class of normalized analytic and bi-univalent functions denoted by D[sub.Σ](δ,η,λ,t,r). These functions are connected to the Bazilevič functions and the λ-pseudo-starlike functions. We employ Sakaguchi Type Functions and Horadam polynomials in our survey. We establi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-02, Vol.16 (2)
Hauptverfasser: Al-Shbeil, Isra, Wanas, Abbas Kareem, AlAqad, Hala, Cătaş, Adriana, Alohali, Hanan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we introduce a new class of normalized analytic and bi-univalent functions denoted by D[sub.Σ](δ,η,λ,t,r). These functions are connected to the Bazilevič functions and the λ-pseudo-starlike functions. We employ Sakaguchi Type Functions and Horadam polynomials in our survey. We establish the Fekete-Szegö inequality for the functions in D[sub.Σ](δ,η,λ,t,r) and derive upper bounds for the initial Taylor–Maclaurin coefficients |a[sub.2]| and |a[sub.3]|. Additionally, we establish connections between our results and previous research papers on this topic.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16020218