Corrosion Behavior of Titanium Alloys with Anodized and Exposed in NaCl and H[sub.2]SO[sub.4] Solutions
Nowadays, different industries, such as the aerospace and biomedical industries, prefer using Ti alloys due to their excellent anti-corrosion properties and ability to generate a TiO[sub.2] oxide layer; this induces the use of anodization to increase the useful life of components. The aim of this wo...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2024-01, Vol.14 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nowadays, different industries, such as the aerospace and biomedical industries, prefer using Ti alloys due to their excellent anti-corrosion properties and ability to generate a TiO[sub.2] oxide layer; this induces the use of anodization to increase the useful life of components. The aim of this work is to characterize the electrochemical effect of anodizing treatment on titanium alloys (Ti CP2, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-4V, and Ti Beta-C) in NaOH and KOH at 1 M, applying a current density of 0.0025 A/cm[sup.2]. The electrochemical techniques employed were electrochemical noise (EN) and electrochemical impedance spectroscopy (EIS), supported by ASTM G199 and ASTM G106 in electrolytes of NaCl and H[sub.2]SO[sub.4] at 3.5 wt. % as a simulation of marine and industrial atmospheres. Also, the anodized transversal section and surface morphology were characterized by a scanning electron microscope (SEM). The results of both electrochemical techniques indicated that Ti-6Al-2Sn-4Zr-2Mo anodized in NaOH presented the best properties against corrosion, and the thickness of the oxide was the biggest. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met14020160 |