Prediction of Permeability Coefficient Ik/I in Sandy Soils Using ANN
The paper presents a method of application of an ANN (Artificial Neural Network) to predict the permeability coefficient k in sandy soils: FSa, MSa, CSa. To develop an ANN the results of permeability coefficients from pumping and consolidation tests were applied. The proposed ANN with an architectur...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-06, Vol.14 (11) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper presents a method of application of an ANN (Artificial Neural Network) to predict the permeability coefficient k in sandy soils: FSa, MSa, CSa. To develop an ANN the results of permeability coefficients from pumping and consolidation tests were applied. The proposed ANN with an architecture 6-8-1 predicts the value of permeability coefficient k based on the following parameters: soil type, relative density I[sub.D], void ratio e and effective soil diameter d[sub.10]. The mean relative error and single maximum value of the relative error for the proposed ANN are following: Mean RE = ±4%, Max RE = 7.59%. The use of the ANN to predict the soil permeability coefficient allows the reduction of the costs and time needed to conduct laboratory or field tests to determine this parameter. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su14116736 |