Characterization of Polyvinyl Alcohol Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content

Recently, the food packaging industry has focused on developing an eco-friendly and sustainable food packaging system. This study describes the effect of beeswax on the physical, structural, and barrier properties of a polyvinyl alcohol (PVA)/polyacrylic acid (PAA) composite film. The incorporation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-01, Vol.16 (3)
Hauptverfasser: Lim, Woo Su, Kim, Min Ha, Park, Hyun Jin, Lee, Min Hyeock
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, the food packaging industry has focused on developing an eco-friendly and sustainable food packaging system. This study describes the effect of beeswax on the physical, structural, and barrier properties of a polyvinyl alcohol (PVA)/polyacrylic acid (PAA) composite film. The incorporation of beeswax improved the barrier properties against oxygen, water, and oil. However, the addition of a high content of beeswax caused phase separation in the film-forming solution. The destabilization mechanisms such as clarification and creaming formation in the film-forming solution were revealed by turbidimetric analysis. The results of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicates that non-homogeneous structures in the film-forming solution were formed as a function of increased beeswax content due to the agglomeration of beeswax. The mechanical properties of the films were also evaluated to determine the most appropriate content of beeswax. There was a slight decrease in tensile strength and an increase in elongation as beeswax content increased up to 10%. Thus, the PVA/PAA composite film with 10% beeswax was chosen for further applications. In summary, the PVA/PAA composite film developed in this study with 10% beeswax exhibited a significant improvement in barrier properties and has the potential for use in commerce.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16030310