Psammophytes IAlyssum desertorum/I Stapf and ISecale sylvestre/I Host Are Sensitive to Soil Flooding

While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes—sand plants—to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2024-01, Vol.13 (3)
Hauptverfasser: Kordyum, Elizabeth, Akimov, Yuri, Polishchuk, Oleksandr, Panas, Ihor, Stepanov, Sergiy, Kozeko, Liudmyla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes—sand plants—to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the synthesis of alcohol dehydrogenase (ADH), heat shock proteins 70 (HSP70), and ethylene in seedlings of psammophytes Alyssum desertorum and Secale sylvestre using electron microscopy, chlorophyll a fluorescence induction, and biochemical methods. It was found that seedlings growing under soil flooding differed from those growing in stationary conditions with such traits as chloroplast ultrastructure, pigment content, chlorophyll fluorescence induction, and the dynamics of ADH, HSP, and ethylene synthesis. Although flooding caused no apparent damage to the photosynthetic apparatus in all the variants, a significant decrease in total photosynthesis efficiency was observed in both studied plants, as indicated by decreased values of φR0 and PI[sub.ABS,total] . More noticeable upregulation of ADH in S. sylvestre, as well as increasing HSP70 level and more intensive ethylene emission in A. desertorum, indicate species-specific differences in these traits in response to short-term soil flooding. Meanwhile, the absence of systemic anaerobic metabolic adaptation to prolonged hypoxia causes plant death.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants13030413