Genome-Wide Analysis of INuclear factor-YC/I Genes in the Tea Plant and Functional Identification of ICsNF-YC6/I

Nuclear factor Y (NF-Y) is a class of transcription factors consisting of NF-YA, NF-YB and NF-YC subunits, which are widely distributed in eukaryotes. The NF-YC subunit regulates plant growth and development and plays an important role in the response to stresses. However, there are few reports on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-01, Vol.25 (2)
Hauptverfasser: Chen, Shengxiang, Wei, Xujiao, Hu, Xiaoli, Zhang, Peng, Chang, Kailin, Zhang, Dongyang, Chen, Wei, Tang, Dandan, Tang, Qian, Li, Pinwu, Tan, Liqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuclear factor Y (NF-Y) is a class of transcription factors consisting of NF-YA, NF-YB and NF-YC subunits, which are widely distributed in eukaryotes. The NF-YC subunit regulates plant growth and development and plays an important role in the response to stresses. However, there are few reports on this gene subfamily in tea plants. In this study, nine CsNF-YC genes were identified in the genome of ‘Longjing 43’. Their phylogeny, gene structure, promoter cis-acting elements, motifs and chromosomal localization of these gene were analyzed. Tissue expression characterization revealed that most of the CsNF-YCs were expressed at low levels in the terminal buds and at relatively high levels in the flowers and roots. CsNF-YC genes responded significantly to gibberellic acid (GA) and abscisic acid (ABA) treatments. We further focused on CsNF-YC6 because it may be involved in the growth and development of tea plants and the regulation of response to abiotic stresses. The CsNF-YC6 protein is localized in the nucleus. Arabidopsis that overexpressed CsNF-YC6 (CsNF-YC6-OE) showed increased seed germination and increased root length under ABA and GA treatments. In addition, the number of cauline leaves, stem lengths and silique numbers were significantly higher in overexpressing Arabidopsis lines than wild type under long-day growth conditions, and CsNF-YC6 promoted primary root growth and increased flowering in Arabidopsis. qPCR analysis showed that in CsNF-YC6-OE lines, flowering pathway-related genes were transcribed at higher levels than wild type. The investigation of the CsNF-YC gene has unveiled that CsNF-YC6 plays a pivotal role in plant growth, root and flower development, as well as responses to abiotic stress.
ISSN:1422-0067
DOI:10.3390/ijms25020836