Wood Species Image Classification Using Two-Dimensional Convolutional Neural Network/Klasifikacija vrsta drva prema slikama uz pomoc dvodimenzionalne konvolucijske neuronske mreze

The woodworking industry's recognition and classification of timber is essential for trade, production and timber science. Traditional methods of identifying wood types are complex, time-consuming, costly and require expertise in wood science. Traditional techniques have been replaced by convol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drvna industrija 2023-12, Vol.74 (4), p.407
Hauptverfasser: Kilic, Kenan, Kilic, Kursat, Sinaice, Brian Bino, Ozcan, Ugur
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The woodworking industry's recognition and classification of timber is essential for trade, production and timber science. Traditional methods of identifying wood types are complex, time-consuming, costly and require expertise in wood science. Traditional techniques have been replaced by convolutional neural networks (CNNs), a deep learning tool to better identify wood species. In contrast to earlier studies that used pretrained models, a novel architecture designed explicitly for the WOOD-AUTH dataset was proposed in this study to develop a new 2D CNN model. The data collection encompasses high-level visual representations of 12 distinct types of timber. It is aimed to create a simpler and faster model as an alternative to time-consuming and heavy wood classification models. Compared to previous studies, this research worked with a newly structured 2D CNN network based on 12 wood species. High accuracy and fast computation time were achieved using fewer numbers (three layers) of the convolutional neural network. The proposed model achieved 94 % accuracy, 87 % precision, 81 % recall, 80 % F1 score and 112 minutes 27 seconds computation time. The 2D CNN model performed better than the transfer learning models regarding training epochs. The primary benefit of the model is its ability to achieve high accuracy with lower computation time, even at high epochs compared to other models. The introduced 2D CNN model produced satisfactory outcomes for wood species classification. KEYWORDS: 2D convolutional neural network; image classification; deep neural network; wood species Identifikacija i klasifikacija drva u drvnoj industriji kljucna je za trgovinu, proizvodnju i znanost o drvu. Tradicionalne metode identifikacije vrste drva slozene su, dugotrajne i skupe te zahtijevaju strucnost s podrucja znanosti o drvu. Za bolju identifikaciju vrste drva tradicionalne su metode zamijenjene konvolucijskim neuronskim mrezama (CNN), odnosno alatom za duboko ucenje. Za razliku od ranijih studija koje su se koristile unaprijed obucenim modelima, u ovoj je studiji predlozena nova arhitektura dizajnirana upravo za skup podataka WOOD-AUTH kako bi se razvio novi 2D CNN model. Zbirka podataka obuhvaca vizualne prikaze visoke razlucivosti 12 razlicitih vrsta drva. Cilj je bio stvoriti jednostavniji i brzi model kao alternativu dugotrajnim i slozenim modelima klasifikacije drva. Za razliku od prethodnih istrazivanja, u ovom je istrazivanju primijenjena nova 2D CNN mreza koja se temelj
ISSN:0012-6772
DOI:10.5552/drvind.2023.0093