Genome-Wide Identification of Callose Synthase Family Genes and Their Expression Analysis in Floral Bud Development and Hormonal Responses in IPrunus mume/I

Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2023-12, Vol.12 (24)
Hauptverfasser: Zhang, Man, Cheng, Wenhui, Wang, Jia, Cheng, Tangren, Lin, Xinlian, Zhang, Qixiang, Li, Cuiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes were studied in a few plant species, their functional roles have not been fully understood in woody perennials. In this study, we identified total of 84 GSL genes in seven plant species and classified them into six phylogenetic clades. An evolutionary analysis revealed different modes of duplication driving the expansion of GSL family genes in monocot and dicot species, with strong purifying selection constraining the protein evolution. We further examined the gene structure, protein sequences, and physiochemical properties of 11 GSL enzymes in Prunus mume and observed strong sequence conservation within the functional domain of PmGSL proteins. However, the exon–intron distribution and protein motif composition are less conservative among PmGSL genes. With a promoter analysis, we detected abundant hormonal responsive cis-acting elements and we inferred the putative transcription factors regulating PmGSLs. To further understand the function of GSL family genes, we analyzed their expression patterns across different tissues, and during the process of floral bud development, pathogen infection, and hormonal responses in Prunus species and identified multiple GSL gene members possibly implicated in the callose deposition associated with bud dormancy cycling, pathogen infection, and hormone signaling. In summary, our study provides a comprehensive understanding of GSL family genes in Prunus species and has laid the foundation for future functional research of callose synthase genes in perennial trees.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants12244159