Undersampling Instance Selection for Hybrid and Incomplete Imbalanced Data

This paper proposes a novel undersampling method, for dealing with imbalanced datasets. The proposal is based on a novel instance importance measure (also introduced in this paper), and is able to balance hybrid and incomplete data. The numerical experiments carried out show the proposed undersampli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.UCS (Annual print and CD-ROM archive ed.) 2020-06, Vol.26 (6), p.698-719
Hauptverfasser: Camacho-Nieto, Oscar, Yáñez-Márquez, Cornelio, Villuendas-Rey, Yenny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel undersampling method, for dealing with imbalanced datasets. The proposal is based on a novel instance importance measure (also introduced in this paper), and is able to balance hybrid and incomplete data. The numerical experiments carried out show the proposed undersampling algorithm outperforms others algorithms of the state of art, in well-known imbalanced datasets.
ISSN:0948-695X
0948-6968
DOI:10.3897/jucs.2020.037