Rough and Porous Micropebbles of CeCu[sub.2]Si[sub.2] for Energy Storage Applications
Supercapacitors have attracted considerable attention due to their advantages, including being lightweight and having rapid charge–discharge, a good rate capability, and high cyclic stability. Electrodes are one of the most important factors influencing the performance of supercapacitors. Herein, a...
Gespeichert in:
Veröffentlicht in: | Materials 2023-11, Vol.16 (22) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supercapacitors have attracted considerable attention due to their advantages, including being lightweight and having rapid charge–discharge, a good rate capability, and high cyclic stability. Electrodes are one of the most important factors influencing the performance of supercapacitors. Herein, a three-dimensional network of rough and porous micropebbles of CeCu[sub.2]Si[sub.2] has been prepared using a one-step procedure and tested for the first time as a supercapacitor electrode. The synthesized material was extensively characterized in a three-electrode configuration using different electrochemical techniques, such as cyclic voltammetry (CV), galvanostatic charge and discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS). CeCu[sub.2]Si[sub.2] shows rather high mass-capacitance values: 278 F/g at 1 A/g and 295 F/g at 10 mV/s. Moreover, the material exhibits remarkable long-term stability: 98% of the initial capacitance was retained after 20,000 cycles at 10 A/g and the Coulombic efficiency remains equal to 100% at the end of the cycles. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16227182 |