Theoretical analysis of a discrete population balance model with sum kernel
The Oort–Hulst–Safronov equation is a relevant population balance model. Its discrete form, developed by Pavel Dubovski, is the main focus of our analysis. The existence and density conservation are established for non-negative symmetric coagulation rates satisfying V_{i,j} \leqslant i+j , \forall i...
Gespeichert in:
Veröffentlicht in: | Portugaliae mathematica 2023-01, Vol.80 (3), p.343-367 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Oort–Hulst–Safronov equation is a relevant population balance model. Its discrete form, developed by Pavel Dubovski, is the main focus of our analysis. The existence and density conservation are established for non-negative symmetric coagulation rates satisfying
V_{i,j} \leqslant i+j
,
\forall i,j \in \mathbb{N}
. Differentiability of the solutions is investigated for kernels with
V_{i,j} \leqslant i^{\alpha}+j^{\alpha}
where
0 \leqslant \alpha \leqslant 1
with initial conditions with bounded
(1+\alpha)
-th moments. The article ends with a uniqueness result under an additional assumption on the coagulation kernel and the boundedness of the second moment. |
---|---|
ISSN: | 0032-5155 1662-2758 |
DOI: | 10.4171/pm/2103 |