The T[sub.e] Transform: A High-Resolution Integral Transform and Its Key Properties

In this paper, we present six new contributions: two novel definitions and four groundbreaking theorems related to the theoretical foundations of the integral T[sub.e] transform, with a specific focus on analyzing functions with integrable modulus. The definitions referred to the T[sub.e] window and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-10, Vol.11 (21)
Hauptverfasser: Trutié-Carrero, Eduardo, Seuret-Jiménez, Diego, Nieto-Jalil, José M, Cantó, Jorge, Valdés-Santiago, Damian, Carballo-Sigler, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Mathematics (Basel)
container_volume 11
creator Trutié-Carrero, Eduardo
Seuret-Jiménez, Diego
Nieto-Jalil, José M
Cantó, Jorge
Valdés-Santiago, Damian
Carballo-Sigler, Laura
description In this paper, we present six new contributions: two novel definitions and four groundbreaking theorems related to the theoretical foundations of the integral T[sub.e] transform, with a specific focus on analyzing functions with integrable modulus. The definitions referred to the T[sub.e] window and the T[sub.e] transform in two parameters, respectively. The theorems provide the main theoretical basis for the T[sub.e] transform: the existence of the T[sub.e] transform in two parameters, the T[sub.e] transform ∈L[sup.1] (R), the existence of the inverse T[sub.e] transform, and uniqueness of the T[sub.e] transform. These results reveal the importance of the fact that the T[sub.e] transform only depends on two parameters (translation and dyadic frequency), obtaining its inverse transformation more directly; hence, breaking through a new approach in function analysis by representing a function in the scale-frequency plane. The theoretical results presented in this paper are supported by the previous works of the authors.
doi_str_mv 10.3390/math11214495
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A772534901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772534901</galeid><sourcerecordid>A772534901</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7725349013</originalsourceid><addsrcrecordid>eNqVS70KwjAYDKKgqJsP8L1Aa5NUatxEFMVFtJuIxPZrG2kTSeLg29tB0NW74Y77IWRCo5BzEU0b6StKGY1jMeuQAWMsCZK26P74Phk7d49aCMrnsRiQU1ohpGf3vIV4gdRK7QpjmwUsYavKKjiiM_XTK6Nhpz2WVtbfFUidw8472OMLDtY80HqFbkR6hawdjj86JOFmna62QSlrvCpdGG9l1jLHRmVGY6HafJkkbMZjEVH-9-ENODJOQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The T[sub.e] Transform: A High-Resolution Integral Transform and Its Key Properties</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Trutié-Carrero, Eduardo ; Seuret-Jiménez, Diego ; Nieto-Jalil, José M ; Cantó, Jorge ; Valdés-Santiago, Damian ; Carballo-Sigler, Laura</creator><creatorcontrib>Trutié-Carrero, Eduardo ; Seuret-Jiménez, Diego ; Nieto-Jalil, José M ; Cantó, Jorge ; Valdés-Santiago, Damian ; Carballo-Sigler, Laura</creatorcontrib><description>In this paper, we present six new contributions: two novel definitions and four groundbreaking theorems related to the theoretical foundations of the integral T[sub.e] transform, with a specific focus on analyzing functions with integrable modulus. The definitions referred to the T[sub.e] window and the T[sub.e] transform in two parameters, respectively. The theorems provide the main theoretical basis for the T[sub.e] transform: the existence of the T[sub.e] transform in two parameters, the T[sub.e] transform ∈L[sup.1] (R), the existence of the inverse T[sub.e] transform, and uniqueness of the T[sub.e] transform. These results reveal the importance of the fact that the T[sub.e] transform only depends on two parameters (translation and dyadic frequency), obtaining its inverse transformation more directly; hence, breaking through a new approach in function analysis by representing a function in the scale-frequency plane. The theoretical results presented in this paper are supported by the previous works of the authors.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11214495</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Integrals ; Transformations (Mathematics)</subject><ispartof>Mathematics (Basel), 2023-10, Vol.11 (21)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Trutié-Carrero, Eduardo</creatorcontrib><creatorcontrib>Seuret-Jiménez, Diego</creatorcontrib><creatorcontrib>Nieto-Jalil, José M</creatorcontrib><creatorcontrib>Cantó, Jorge</creatorcontrib><creatorcontrib>Valdés-Santiago, Damian</creatorcontrib><creatorcontrib>Carballo-Sigler, Laura</creatorcontrib><title>The T[sub.e] Transform: A High-Resolution Integral Transform and Its Key Properties</title><title>Mathematics (Basel)</title><description>In this paper, we present six new contributions: two novel definitions and four groundbreaking theorems related to the theoretical foundations of the integral T[sub.e] transform, with a specific focus on analyzing functions with integrable modulus. The definitions referred to the T[sub.e] window and the T[sub.e] transform in two parameters, respectively. The theorems provide the main theoretical basis for the T[sub.e] transform: the existence of the T[sub.e] transform in two parameters, the T[sub.e] transform ∈L[sup.1] (R), the existence of the inverse T[sub.e] transform, and uniqueness of the T[sub.e] transform. These results reveal the importance of the fact that the T[sub.e] transform only depends on two parameters (translation and dyadic frequency), obtaining its inverse transformation more directly; hence, breaking through a new approach in function analysis by representing a function in the scale-frequency plane. The theoretical results presented in this paper are supported by the previous works of the authors.</description><subject>Integrals</subject><subject>Transformations (Mathematics)</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVS70KwjAYDKKgqJsP8L1Aa5NUatxEFMVFtJuIxPZrG2kTSeLg29tB0NW74Y77IWRCo5BzEU0b6StKGY1jMeuQAWMsCZK26P74Phk7d49aCMrnsRiQU1ohpGf3vIV4gdRK7QpjmwUsYavKKjiiM_XTK6Nhpz2WVtbfFUidw8472OMLDtY80HqFbkR6hawdjj86JOFmna62QSlrvCpdGG9l1jLHRmVGY6HafJkkbMZjEVH-9-ENODJOQg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Trutié-Carrero, Eduardo</creator><creator>Seuret-Jiménez, Diego</creator><creator>Nieto-Jalil, José M</creator><creator>Cantó, Jorge</creator><creator>Valdés-Santiago, Damian</creator><creator>Carballo-Sigler, Laura</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20231001</creationdate><title>The T[sub.e] Transform: A High-Resolution Integral Transform and Its Key Properties</title><author>Trutié-Carrero, Eduardo ; Seuret-Jiménez, Diego ; Nieto-Jalil, José M ; Cantó, Jorge ; Valdés-Santiago, Damian ; Carballo-Sigler, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7725349013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Integrals</topic><topic>Transformations (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trutié-Carrero, Eduardo</creatorcontrib><creatorcontrib>Seuret-Jiménez, Diego</creatorcontrib><creatorcontrib>Nieto-Jalil, José M</creatorcontrib><creatorcontrib>Cantó, Jorge</creatorcontrib><creatorcontrib>Valdés-Santiago, Damian</creatorcontrib><creatorcontrib>Carballo-Sigler, Laura</creatorcontrib><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trutié-Carrero, Eduardo</au><au>Seuret-Jiménez, Diego</au><au>Nieto-Jalil, José M</au><au>Cantó, Jorge</au><au>Valdés-Santiago, Damian</au><au>Carballo-Sigler, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The T[sub.e] Transform: A High-Resolution Integral Transform and Its Key Properties</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>21</issue><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this paper, we present six new contributions: two novel definitions and four groundbreaking theorems related to the theoretical foundations of the integral T[sub.e] transform, with a specific focus on analyzing functions with integrable modulus. The definitions referred to the T[sub.e] window and the T[sub.e] transform in two parameters, respectively. The theorems provide the main theoretical basis for the T[sub.e] transform: the existence of the T[sub.e] transform in two parameters, the T[sub.e] transform ∈L[sup.1] (R), the existence of the inverse T[sub.e] transform, and uniqueness of the T[sub.e] transform. These results reveal the importance of the fact that the T[sub.e] transform only depends on two parameters (translation and dyadic frequency), obtaining its inverse transformation more directly; hence, breaking through a new approach in function analysis by representing a function in the scale-frequency plane. The theoretical results presented in this paper are supported by the previous works of the authors.</abstract><pub>MDPI AG</pub><doi>10.3390/math11214495</doi></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2023-10, Vol.11 (21)
issn 2227-7390
2227-7390
language eng
recordid cdi_gale_infotracacademiconefile_A772534901
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Integrals
Transformations (Mathematics)
title The T[sub.e] Transform: A High-Resolution Integral Transform and Its Key Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20T%5Bsub.e%5D%20Transform:%20A%20High-Resolution%20Integral%20Transform%20and%20Its%20Key%20Properties&rft.jtitle=Mathematics%20(Basel)&rft.au=Truti%C3%A9-Carrero,%20Eduardo&rft.date=2023-10-01&rft.volume=11&rft.issue=21&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11214495&rft_dat=%3Cgale%3EA772534901%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A772534901&rfr_iscdi=true