The T[sub.e] Transform: A High-Resolution Integral Transform and Its Key Properties

In this paper, we present six new contributions: two novel definitions and four groundbreaking theorems related to the theoretical foundations of the integral T[sub.e] transform, with a specific focus on analyzing functions with integrable modulus. The definitions referred to the T[sub.e] window and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-10, Vol.11 (21)
Hauptverfasser: Trutié-Carrero, Eduardo, Seuret-Jiménez, Diego, Nieto-Jalil, José M, Cantó, Jorge, Valdés-Santiago, Damian, Carballo-Sigler, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present six new contributions: two novel definitions and four groundbreaking theorems related to the theoretical foundations of the integral T[sub.e] transform, with a specific focus on analyzing functions with integrable modulus. The definitions referred to the T[sub.e] window and the T[sub.e] transform in two parameters, respectively. The theorems provide the main theoretical basis for the T[sub.e] transform: the existence of the T[sub.e] transform in two parameters, the T[sub.e] transform ∈L[sup.1] (R), the existence of the inverse T[sub.e] transform, and uniqueness of the T[sub.e] transform. These results reveal the importance of the fact that the T[sub.e] transform only depends on two parameters (translation and dyadic frequency), obtaining its inverse transformation more directly; hence, breaking through a new approach in function analysis by representing a function in the scale-frequency plane. The theoretical results presented in this paper are supported by the previous works of the authors.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11214495