Biomass Derived High Porous Carbon via CO[sub.2] Activation for Supercapacitor Electrodes

In this study, we systematically study the efficient production method and electrochemical characteristics of activated carbons (AC) derived from rice husk (RH) and walnut shell (WS). In particular, the effectiveness of physical activation using carbon dioxide (CO[sub.2] ) was investigated and compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites science 2023-10, Vol.7 (10)
Hauptverfasser: Taurbekov, Azamat, Abdisattar, Alisher, Atamanov, Meiram, Yeleuov, Mukhtar, Daulbayev, Chingis, Askaruly, Kydyr, Kaidar, Bayan, Mansurov, Zulkhair, Castro-Gutierrez, Jimena, Celzard, Alain, Fierro, Vanessa, Atamanova, Tolganay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we systematically study the efficient production method and electrochemical characteristics of activated carbons (AC) derived from rice husk (RH) and walnut shell (WS). In particular, the effectiveness of physical activation using carbon dioxide (CO[sub.2] ) was investigated and compared with the more common chemical activation method using potassium hydroxide (KOH). The results show that the KOH–activated samples have remarkable specific capacities, reaching 157.8 F g[sup.−1] for RH and 152 F g[sup.−1] for WS at 1 A g[sup.−1] . However, the rate capability of AC obtained via KOH decreases significantly as the scanning rate increases, retaining only 51.5% and 68% of their original capacities for RH–KOH and WS–KOH, respectively, at 20 A g[sup.–1] . In contrast, CO[sub.2] –activated samples show a superior rate performance with a capacity retention of 75.6% for WS and 80% for RH at the same current density. In addition, electrochemical impedance spectroscopy (EIS) analysis shows that AC obtained via CO[sub.2] has a lower charge transfer resistance compared to its KOH counterparts. CO[sub.2] –activated RH and WS electrodes show Rct values of 0.1 Ω and 0.24 Ω, respectively, indicating improved ion transport kinetics and surface area utilization. These results highlight the importance of activation techniques in tailoring the electrochemical behavior of biomass–derived carbon. This study not only expands the understanding of the interaction between activation, morphology, and performance but also indicates the potential of CO[sub.2] activation as an environmentally friendly and efficient alternative. As the field of sustainable energy storage advances, this work provides valuable guidance for the development of high–performance supercapacitor electrodes with less environmental impact.
ISSN:2504-477X
2504-477X
DOI:10.3390/jcs7100444