Application Prospect of Anaerobic Reduction Pathways in IAcidithiobacillus ferrooxidans/I for Mine Tailings Disposal: A Review
The accumulation of mine tailings on Earth, generated from the extraction, processing, and utilization of mineral resources, is a serious environmental challenge. The importance of the recovery of valuable elements and rare-earth elements, together with the economic benefits of precious and base met...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2023-09, Vol.13 (9) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accumulation of mine tailings on Earth, generated from the extraction, processing, and utilization of mineral resources, is a serious environmental challenge. The importance of the recovery of valuable elements and rare-earth elements, together with the economic benefits of precious and base metals, is a strong incentive to develop sustainable methods to recover metals from tailings. Currently, researchers are attempting to improve the efficiency of valuable elements and rare-earth elements recovery from tailings using bioleaching, a more sustainable method compared to traditional methods. In this work, we report the research status of the application of Acidithiobacillus ferrooxidans (At. ferrooxidans) anaerobic reduction in tailings disposal. Recent advances in the anaerobic characteristics of At. ferrooxidans recovery process and technical difficulties are further described. We found that current research has made significant progress in anaerobic recovery. This is of great significance for the development of bioleaching technologies and industrial production of heavy metals in tailings. Finally, based on the perspectives and directions of this review, the present study can act as an important reference for the academic participants involved in this promising field. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min13091192 |