Fabrication of Snporphyrin-Imbedded Silica Aerogel Composite
Optoelectronic functional composite materials with porous structures are of great importance in various fields. A hybrid composite (SnP@SiA) composed of (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) in silica aerogel (SiA) was successfully fabricated through the reaction of SnP...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2023-09, Vol.7 (9) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optoelectronic functional composite materials with porous structures are of great importance in various fields. A hybrid composite (SnP@SiA) composed of (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) in silica aerogel (SiA) was successfully fabricated through the reaction of SnP with silanol groups of SiA in the presence of hexamethyldisilazane (HMDS). SnP@SiA was then characterized using various instrumental techniques. The zeta potential for SnP@SiA (−11.62 mV) was found to be less negative than that for SiA (−18.26 mV), indicating that the surface of SnP@SiA is covered by hydrophobic species such as SnP and trimethylsilyl groups. The Brunauer–Emmett–Teller (BET) surface area, pore volume, and average pore size of SnP@SiA are 697.07 m[sup.2]/g, 1.69 cm[sup.3]/g, and 8.45 nm, respectively, making it a suitable composite for catalytic applications. SnP@SiA, a photocatalyst with high porosity and a large surface area, yields promising performance in the photodegradation of acid orange 7 (AO7) under visible light irradiation in aqueous solution. This hybrid composite exhibited the desirable properties of aerogels along with the photoelectronic features of porphyrins. Therefore, this porphyrin-imbedded mesoporous material has valuable potential in various applications such as photocatalysis, light energy conversion, biochemical sensors, and gas storage. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs7090401 |