Fabrication of Snporphyrin-Imbedded Silica Aerogel Composite

Optoelectronic functional composite materials with porous structures are of great importance in various fields. A hybrid composite (SnP@SiA) composed of (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) in silica aerogel (SiA) was successfully fabricated through the reaction of SnP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composites science 2023-09, Vol.7 (9)
Hauptverfasser: Jo, Min-Gyeong, Kim, Nam-Gil, Kim, Hee-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optoelectronic functional composite materials with porous structures are of great importance in various fields. A hybrid composite (SnP@SiA) composed of (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) in silica aerogel (SiA) was successfully fabricated through the reaction of SnP with silanol groups of SiA in the presence of hexamethyldisilazane (HMDS). SnP@SiA was then characterized using various instrumental techniques. The zeta potential for SnP@SiA (−11.62 mV) was found to be less negative than that for SiA (−18.26 mV), indicating that the surface of SnP@SiA is covered by hydrophobic species such as SnP and trimethylsilyl groups. The Brunauer–Emmett–Teller (BET) surface area, pore volume, and average pore size of SnP@SiA are 697.07 m[sup.2]/g, 1.69 cm[sup.3]/g, and 8.45 nm, respectively, making it a suitable composite for catalytic applications. SnP@SiA, a photocatalyst with high porosity and a large surface area, yields promising performance in the photodegradation of acid orange 7 (AO7) under visible light irradiation in aqueous solution. This hybrid composite exhibited the desirable properties of aerogels along with the photoelectronic features of porphyrins. Therefore, this porphyrin-imbedded mesoporous material has valuable potential in various applications such as photocatalysis, light energy conversion, biochemical sensors, and gas storage.
ISSN:2504-477X
2504-477X
DOI:10.3390/jcs7090401