UAVs as remote sensing platforms in plant ecology: review of applications and challenges
Abstract Aims Unmanned aerial vehicles (UAVs), i.e. drones, have recently emerged as cost-effective and flexible tools for acquiring remote sensing data with fine spatial and temporal resolution. It provides a new method and opportunity for plant ecologists to study issues from individual to regiona...
Gespeichert in:
Veröffentlicht in: | Journal of plant ecology 2021-12, Vol.14 (6), p.1003-1023 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Aims
Unmanned aerial vehicles (UAVs), i.e. drones, have recently emerged as cost-effective and flexible tools for acquiring remote sensing data with fine spatial and temporal resolution. It provides a new method and opportunity for plant ecologists to study issues from individual to regional scales. However, as a new method, UAVs remote sensing applications in plant ecology are still challenged. The needs of plant ecology research and the application development of UAVs remote sensing should be better integrated.
Methods
This report provides a comprehensive review of UAV-based remote sensing applications in plant ecology to synthesize prospects of applying drones to advance plant ecology research.
Important Findings
Of the 400 references, 59% were published in remote sensing journals rather than in plant ecology journals, reflecting a substantial gap between the interests of remote sensing experts and plant ecologists. Most of the studies focused on UAV remote sensing’s technical aspects, such as data processing and remote sensing inversion, with little attention on answering ecological questions. There were 61% of studies involved community-scale research. RGB and multispectral cameras were the most used sensors (75%). More ecologically meaningful parameters can be extracted from UAV data to better understand the canopy surface irregularity and community heterogeneity, identify geometrical characteristics of canopy gaps and construct canopy chemical assemblies from living vegetation volumes. More cooperation between plant ecologists and remote sensing experts is needed to promote UAV remote sensing in advancing plant ecology research.
Graphical Abstract |
---|---|
ISSN: | 1752-993X 1752-9921 1752-993X |
DOI: | 10.1093/jpe/rtab089 |