Production of Blended Poly Electrospun Fibers for Neural Applications

This study describes, for the first time, the successful incorporation of poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in Poly(acrylonitrile) (PAN) fibers. While electroconductive PEDOT:PSS is extremely challenging to electrospun into fibers. Therefore, PAN, a polymer easy to ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-06, Vol.15 (13)
Hauptverfasser: Garrudo, Fábio F. F, Filippone, Giulia, Resina, Leonor, Silva, João C, Barbosa, Frederico, Ferreira, Luís F. V, Esteves, Teresa, Marques, Ana Clara, Morgado, Jorge, Ferreira, Frederico Castelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study describes, for the first time, the successful incorporation of poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in Poly(acrylonitrile) (PAN) fibers. While electroconductive PEDOT:PSS is extremely challenging to electrospun into fibers. Therefore, PAN, a polymer easy to electrospun, was chosen as a carrier due to its biocompatibility and tunable chemical stability when cross-linked, particularly using strong acids. PAN:PEDOT:PSS blends, prepared from PEDOT:PSS Clevios PH1000, were electrospun into fibers (PH1000) with a diameter of 515 ± 120 nm, which after being thermally annealed (PH1000 24H) and treated with heated sulfuric acid (PH1000 H[sub.2]SO[sub.4]), resulted in fibers with diameters of 437 ± 109 and 940 ± 210 nm, respectively. The fibers obtained over the stepwise process were characterized through infra-red/Raman spectroscopy and cyclic voltammetry. The final fiber meshes showed enhanced electroconductivity (3.2 × 10[sup.−3] S cm[sup.−1], four-points-assay). Fiber meshes biocompatibility was evaluated using fibroblasts and neural stem cells (NSCs) following, respectively, the ISO10993 guidelines and standard adhesion/proliferation assay. NSCs cultured on PH1000 H[sub.2]SO[sub.4] fibers presented normal morphology and high proliferation rates (0.37 day[sup.−1] vs. 0.16 day[sup.−1] for culture plate), indicating high biocompatibility for NSCs. Still, the low initial NSC adhesion of 7% calls for improving seeding methodologies. PAN:PEDOT:PSS fibers, here successful produced for the first time, have potential applications in neural tissue engineering and soft electronics.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15132760