Revealing the Roles of the JAZ Family in Defense Signaling and the Agarwood Formation Process in IAquilaria sinensis/I
Jasmonate ZIM-domain family proteins (JAZs) are repressors in the signaling cascades triggered by jasmonates (JAs). It has been proposed that JAs play essential roles in the sesquiterpene induction and agarwood formation processes in Aquilaria sinensis. However, the specific roles of JAZs in A. sine...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-06, Vol.24 (12) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Jasmonate ZIM-domain family proteins (JAZs) are repressors in the signaling cascades triggered by jasmonates (JAs). It has been proposed that JAs play essential roles in the sesquiterpene induction and agarwood formation processes in Aquilaria sinensis. However, the specific roles of JAZs in A. sinensis remain elusive. This study employed various methods, including phylogenetic analysis, real-time quantitative PCR, transcriptomic sequencing, yeast two-hybrid assay, and pull-down assay, to characterize A. sinensis JAZ family members and explore their correlations with WRKY transcription factors. The bioinformatic analysis revealed twelve putative AsJAZ proteins in five groups and sixty-four putative AsWRKY transcription factors in three groups. The AsJAZ and AsWRKY genes exhibited various tissue-specific or hormone-induced expression patterns. Some AsJAZ and AsWRKY genes were highly expressed in agarwood or significantly induced by methyl jasmonate in suspension cells. Potential relationships were proposed between AsJAZ4 and several AsWRKY transcription factors. The interaction between AsJAZ4 and AsWRKY75n was confirmed by yeast two-hybrid and pull-down assays. This study characterized the JAZ family members in A. sinensis and proposed a model of the function of the AsJAZ4/WRKY75n complex. This will advance our understanding of the roles of the AsJAZ proteins and their regulatory pathways. |
---|---|
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms24129872 |