Affine Phase Retrieval for Sparse Signals via [Formula omitted] Minimization
Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the [Formula omitted] minimization to exploit the sparsity of signals for affine phase retrieval, showing that [Formula omitted] Gaussian random measureme...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2023-06, Vol.29 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the [Formula omitted] minimization to exploit the sparsity of signals for affine phase retrieval, showing that [Formula omitted] Gaussian random measurements are sufficient to recover all k-sparse signals by solving a natural [Formula omitted] minimization program, where n is the dimension of signals. For the case where measurements are corrupted by noises, the reconstruction error bounds are given for both real-valued and complex-valued signals. Our results demonstrate that the natural [Formula omitted] minimization program for affine phase retrieval is stable. |
---|---|
ISSN: | 1069-5869 |
DOI: | 10.1007/s00041-023-10022-6 |