Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in IC/I-Algebra Valued Bipolar Ib/I-Metric Spaces
Here, we shall introduce the new notion of C[sup.*]-algebra valued bipolar b-metric spaces as a generalization of usual metric spaces, C[sup.*]-algebra valued metric space, b-metric spaces. In the above-mentioned spaces, we shall define (α[sub.A]−ψ[sub.A]) contractions and prove some fixed point the...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-05, Vol.11 (10) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we shall introduce the new notion of C[sup.*]-algebra valued bipolar b-metric spaces as a generalization of usual metric spaces, C[sup.*]-algebra valued metric space, b-metric spaces. In the above-mentioned spaces, we shall define (α[sub.A]−ψ[sub.A]) contractions and prove some fixed point theorems for these contractions. Some existing results from the literature are also proved by using our main results. As an application Ulam-Hyers stability and well-posedness of fixed point problems are also discussed. Some examples are also given to illustrate our results. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11102323 |