Uniform Error Estimates of the Finite Element Method for the Navier–Stokes Equations in R[sup.2] with IL/I[sup.2] Initial Data
In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L[sup.2] space for all time t>0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H[sup.1]-norm, when t∈[0,1). Under the...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2023-04, Vol.25 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Entropy (Basel, Switzerland) |
container_volume | 25 |
creator | Ren, Shuyan Wang, Kun Feng, Xinlong |
description | In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L[sup.2] space for all time t>0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H[sup.1]-norm, when t∈[0,1). Under the uniqueness condition, by applying the integral technique and the estimates in the negative norm, we deduce the uniform-in-time optimal error bounds for the velocity in H[sup.1]-norm and the pressure in L[sup.2]-norm. |
doi_str_mv | 10.3390/e25050726 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A750889804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750889804</galeid><sourcerecordid>A750889804</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A7508898043</originalsourceid><addsrcrecordid>eNqVjM1OwzAQhC0EEuXnwBvsCzTdOE2bHBG4IhJw4OeEELLaNVlIbLC3cO078IY8CRECiSuaw4xm9I1SRzlmRVHjhHSJJc71bEuNcqzr8bRA3P6Td9VeSk-IutD5bKQ2t55diD2YGEMEk4R7K5QgOJCWYMGehcB01JMXuCBpwwoG4nu9tG9M8XPzcS3heYDM69oKB5-APVzdpfVLpu_hnaWF5nzS_BbN8Mm2g1Mr9kDtONslOvzxfZUtzM3J2fjRdvTA3gWJdjloRT0vgyfHQ388L7Gq6gqnxb-BL6-XXQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Error Estimates of the Finite Element Method for the Navier–Stokes Equations in R[sup.2] with IL/I[sup.2] Initial Data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Ren, Shuyan ; Wang, Kun ; Feng, Xinlong</creator><creatorcontrib>Ren, Shuyan ; Wang, Kun ; Feng, Xinlong</creatorcontrib><description>In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L[sup.2] space for all time t>0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H[sup.1]-norm, when t∈[0,1). Under the uniqueness condition, by applying the integral technique and the estimates in the negative norm, we deduce the uniform-in-time optimal error bounds for the velocity in H[sup.1]-norm and the pressure in L[sup.2]-norm.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e25050726</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Analysis ; Finite element method ; Methods</subject><ispartof>Entropy (Basel, Switzerland), 2023-04, Vol.25 (5)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Ren, Shuyan</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Feng, Xinlong</creatorcontrib><title>Uniform Error Estimates of the Finite Element Method for the Navier–Stokes Equations in R[sup.2] with IL/I[sup.2] Initial Data</title><title>Entropy (Basel, Switzerland)</title><description>In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L[sup.2] space for all time t>0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H[sup.1]-norm, when t∈[0,1). Under the uniqueness condition, by applying the integral technique and the estimates in the negative norm, we deduce the uniform-in-time optimal error bounds for the velocity in H[sup.1]-norm and the pressure in L[sup.2]-norm.</description><subject>Analysis</subject><subject>Finite element method</subject><subject>Methods</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVjM1OwzAQhC0EEuXnwBvsCzTdOE2bHBG4IhJw4OeEELLaNVlIbLC3cO078IY8CRECiSuaw4xm9I1SRzlmRVHjhHSJJc71bEuNcqzr8bRA3P6Td9VeSk-IutD5bKQ2t55diD2YGEMEk4R7K5QgOJCWYMGehcB01JMXuCBpwwoG4nu9tG9M8XPzcS3heYDM69oKB5-APVzdpfVLpu_hnaWF5nzS_BbN8Mm2g1Mr9kDtONslOvzxfZUtzM3J2fjRdvTA3gWJdjloRT0vgyfHQ388L7Gq6gqnxb-BL6-XXQA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ren, Shuyan</creator><creator>Wang, Kun</creator><creator>Feng, Xinlong</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20230401</creationdate><title>Uniform Error Estimates of the Finite Element Method for the Navier–Stokes Equations in R[sup.2] with IL/I[sup.2] Initial Data</title><author>Ren, Shuyan ; Wang, Kun ; Feng, Xinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A7508898043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Finite element method</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Shuyan</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Feng, Xinlong</creatorcontrib><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Shuyan</au><au>Wang, Kun</au><au>Feng, Xinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Error Estimates of the Finite Element Method for the Navier–Stokes Equations in R[sup.2] with IL/I[sup.2] Initial Data</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>25</volume><issue>5</issue><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L[sup.2] space for all time t>0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H[sup.1]-norm, when t∈[0,1). Under the uniqueness condition, by applying the integral technique and the estimates in the negative norm, we deduce the uniform-in-time optimal error bounds for the velocity in H[sup.1]-norm and the pressure in L[sup.2]-norm.</abstract><pub>MDPI AG</pub><doi>10.3390/e25050726</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2023-04, Vol.25 (5) |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A750889804 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Analysis Finite element method Methods |
title | Uniform Error Estimates of the Finite Element Method for the Navier–Stokes Equations in R[sup.2] with IL/I[sup.2] Initial Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Error%20Estimates%20of%20the%20Finite%20Element%20Method%20for%20the%20Navier%E2%80%93Stokes%20Equations%20in%20R%5Bsup.2%5D%20with%20IL/I%5Bsup.2%5D%20Initial%20Data&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Ren,%20Shuyan&rft.date=2023-04-01&rft.volume=25&rft.issue=5&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e25050726&rft_dat=%3Cgale%3EA750889804%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A750889804&rfr_iscdi=true |