Uniform Error Estimates of the Finite Element Method for the Navier–Stokes Equations in R[sup.2] with IL/I[sup.2] Initial Data

In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L[sup.2] space for all time t>0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H[sup.1]-norm, when t∈[0,1). Under the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-04, Vol.25 (5)
Hauptverfasser: Ren, Shuyan, Wang, Kun, Feng, Xinlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L[sup.2] space for all time t>0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H[sup.1]-norm, when t∈[0,1). Under the uniqueness condition, by applying the integral technique and the estimates in the negative norm, we deduce the uniform-in-time optimal error bounds for the velocity in H[sup.1]-norm and the pressure in L[sup.2]-norm.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25050726