From Ip/I-Values to Posterior Probabilities of Null Hypotheses
Minimum Bayes factors are commonly used to transform two-sided p-values to lower bounds on the posterior probability of the null hypothesis, in particular the bound −e·p·log(p). This bound is easy to compute and explain; however, it does not behave as a Bayes factor. For example, it does not change...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2023-04, Vol.25 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Minimum Bayes factors are commonly used to transform two-sided p-values to lower bounds on the posterior probability of the null hypothesis, in particular the bound −e·p·log(p). This bound is easy to compute and explain; however, it does not behave as a Bayes factor. For example, it does not change with the sample size. This is a very serious defect, particularly for moderate to large sample sizes, which is precisely the situation in which p-values are the most problematic. In this article, we propose adjusting this minimum Bayes factor with the information to approximate an exact Bayes factor, not only when p is a p-value but also when p is a pseudo-p-value. Additionally, we develop a version of the adjustment for linear models using the recent refinement of the Prior-Based BIC. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e25040618 |