Propane Dehydrogenation on Co-N-C/SiO[sub.2] Catalyst: The Role of Single-Atom Active Sites

Recently, significant attention has been drawn to carbon materials containing cobalt coordinated to nitrogen, as the promising inexpensive catalysts of a wide range of applications. Given that non-oxidative propane dehydrogenation to propylene (PDH) is also becoming increasingly important, we presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-10, Vol.12 (10)
Hauptverfasser: Chernov, Aleksey N, Sobolev, Vladimir I, Gerasimov, Evgeny Yu, Koltunov, Konstantin Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, significant attention has been drawn to carbon materials containing cobalt coordinated to nitrogen, as the promising inexpensive catalysts of a wide range of applications. Given that non-oxidative propane dehydrogenation to propylene (PDH) is also becoming increasingly important, we present the results on PDH over Co-N-C/SiO[sub.2] composites. The latter were prepared by pyrolysis of silicone gel enriched with Co(II) salt and triethanolamine. According to XRD, HRTEM and XPS characterizations, the resulting materials consist of metallic cobalt nanoparticles of about 5 to 10 nm size and subnano-sized cobalt species (cobalt single atom sites coordinated to nitrogen/carbon), which are uniformly distributed in mesoporous silica of high specific surface area (up to 500 m[sup.2] g[sup.−1]). The composites demonstrated significant catalytic activity in PDH, which was examined under typical reaction conditions (600 °C, 1 atm) using a fixed bed flow reactor. The subnano-sized Co centers proved to be the real active catalytic sites responsible for the target reaction, while carbon deposition induced by Co nanoparticles provided the catalyst deactivation. It is shown that the catalyst can be reactivated by the treatment with oxygen, which, in addition, notably increases selectivity to propylene (up to 98%) and enhances the catalyst stability in the next operation cycle. This remarkable change in catalytic behavior is shown to be due to the dramatic structural modification of the catalyst upon high-temperature oxidation.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12101262