Effect of Poultry Manure-Derived Compost on the Growth of Ieucalypts/I spp. Hybrid Clones

Interspecific hybrids of E. grandis × E. camaldulensis were generated to widen the plantation area. The aim of this study was to assess root capability and development for six different clones of eucalyptus grown in substrates made with three different composts derived from poultry manure. A factori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-10, Vol.10 (11)
Hauptverfasser: Rizzo, Pedro F, Salinas, María C, Della Torre, Virginia, Diez, Juan P, Sallesses, Leonardo F, Riera, Nicolás I, Pathauer, Pablo S, Komilis, Dimitrios, Sánchez, Antoni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interspecific hybrids of E. grandis × E. camaldulensis were generated to widen the plantation area. The aim of this study was to assess root capability and development for six different clones of eucalyptus grown in substrates made with three different composts derived from poultry manure. A factorial design was used to assess the effect of different composts on six growth variables. The analysis detected a greater effect from the genotype than the substrate. E. grandis × E. camaldulensis hybrid vegetative propagation was successful in alternative substrates formulated from composted poultry manure. GC8 was the genotype that showed the greatest differences for four the different variables among the substrates, being both the most sensitive and the one with the highest values for all parameters measured. The hybrids' vegetative propagation was determined in alternative substrates formulated from poultry manure compost. The physicochemical characteristics of substrates composed of pine bark and sawdust provided adequate conditions for the growth of eucalyptus. GC8 was the genotype most sensitive to the use of different substrates, showing significant differences in the ratio of roots/callus, radicular dry weight, and cutting dry weight. These clones might be a good option for evaluating compost-based substrates for forestry applications.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10112182