e-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints

Using a scalarization method, approximate optimality conditions of a multiobjective nonconvex optimization problem which has an infinite number of constraints are established. Approximate duality theorems for mixed duality are given. Results on approximate duality in Wolfe type and Mond-Weir type ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2022-05, Vol.57 (2), p.447
Hauptverfasser: Son, T.Q, Kim, D.S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a scalarization method, approximate optimality conditions of a multiobjective nonconvex optimization problem which has an infinite number of constraints are established. Approximate duality theorems for mixed duality are given. Results on approximate duality in Wolfe type and Mond-Weir type are also derived. Approximate saddle point theorems of an approximate vector Lagrangian function are investigated. Keywords Almost quasi [epsilon]-Pareto solution * Quasi [epsilon]-Pareto saddle point * [epsilon]-Vector Lagrangian Mathematics Subject Classification 90C26 * 49N15 * 90C46
ISSN:0925-5001
DOI:10.1007/s10898-012-9994-0