e-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints
Using a scalarization method, approximate optimality conditions of a multiobjective nonconvex optimization problem which has an infinite number of constraints are established. Approximate duality theorems for mixed duality are given. Results on approximate duality in Wolfe type and Mond-Weir type ar...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2022-05, Vol.57 (2), p.447 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a scalarization method, approximate optimality conditions of a multiobjective nonconvex optimization problem which has an infinite number of constraints are established. Approximate duality theorems for mixed duality are given. Results on approximate duality in Wolfe type and Mond-Weir type are also derived. Approximate saddle point theorems of an approximate vector Lagrangian function are investigated. Keywords Almost quasi [epsilon]-Pareto solution * Quasi [epsilon]-Pareto saddle point * [epsilon]-Vector Lagrangian Mathematics Subject Classification 90C26 * 49N15 * 90C46 |
---|---|
ISSN: | 0925-5001 |
DOI: | 10.1007/s10898-012-9994-0 |