Operator-Valued Frames for the Heisenberg Group
A classical result of Duffin and Schaeffer gives conditions under which a discrete collection of characters on R , restricted to E = ( - γ , γ ) ⊊ ( - 1 / 2 , 1 / 2 ) , forms a Hilbert-space frame for L 2 ( E ) . For the case of characters with period one, this is just the Poisson Summation Formula....
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2015-12, Vol.21 (6), p.1384-1397 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A classical result of Duffin and Schaeffer gives conditions under which a discrete collection of characters on
R
, restricted to
E
=
(
-
γ
,
γ
)
⊊
(
-
1
/
2
,
1
/
2
)
, forms a Hilbert-space frame for
L
2
(
E
)
. For the case of characters with period one, this is just the Poisson Summation Formula. Duffin and Schaeffer show that perturbations preserve the frame condition in this case. This paper gives analogous results for the real Heisenberg group
H
n
, where frames are replaced by
operator-valued frames
. The Selberg Trace Formula is used to show that perturbations of the orthogonal case continue to behave as operator-valued frames. This technique enables the construction of decompositions of elements of
L
2
(
E
)
for suitable subsets
E
of
H
n
in terms of representations of
H
n
. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-015-9409-y |