The Hardy Inequality for Hermite Expansions

The purpose of the paper is to prove a sharp form of Hardy-type inequality, conjectured by Kanjin, for Hermite expansions of functions in the Hardy space H 1 ( R ) , that is, ∑ n = 1 ∞ n - 3 4 | a n ( f ) | ≤ A ‖ f ‖ H 1 ( R ) for all f ∈ H 1 ( R ) , where A is a constant independent of f ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2015-04, Vol.21 (2), p.267-280
Hauptverfasser: Li, Zhongkai, Yu, Yufeng, Shi, Yehao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of the paper is to prove a sharp form of Hardy-type inequality, conjectured by Kanjin, for Hermite expansions of functions in the Hardy space H 1 ( R ) , that is, ∑ n = 1 ∞ n - 3 4 | a n ( f ) | ≤ A ‖ f ‖ H 1 ( R ) for all f ∈ H 1 ( R ) , where A is a constant independent of f .
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-014-9367-9