Compact Difference Schemes on a Three-Point Stencil for Second-Order Hyperbolic Equations

We consider compact difference schemes of approximation order on a three-point spatial stencil for the Klein–Gordon equations with constant and variable coefficients. New compact schemes are proposed for one type of second-order quasilinear hyperbolic equations. In the case of constant coefficients,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2021-07, Vol.57 (7), p.934-946
Hauptverfasser: Matus, P. P., Hoang Thi Kieu Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider compact difference schemes of approximation order on a three-point spatial stencil for the Klein–Gordon equations with constant and variable coefficients. New compact schemes are proposed for one type of second-order quasilinear hyperbolic equations. In the case of constant coefficients, we prove the strong stability of the difference solution under small perturbations of the initial conditions, the right-hand side, and the coefficients of the equation. A priori estimates are obtained for the stability and convergence of the difference solution in strong mesh norms.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266121070090