Modification of the Dynamic Regularization Method for Linear Parabolic Equations

We consider the problem of reconstructing distributed inputs (disturbances) in linear parabolic equations. An algorithm for solving this problem is given. An upper bound for the convergence rate is established for the case in which the input is a function of bounded variation. The algorithm combines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2020-11, Vol.56 (11), p.1452-1462
1. Verfasser: Maksimov, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of reconstructing distributed inputs (disturbances) in linear parabolic equations. An algorithm for solving this problem is given. An upper bound for the convergence rate is established for the case in which the input is a function of bounded variation. The algorithm combines the optimal preset and positional control methods and permits reconstruction based on inaccurate measurements of solutions of the equations at discrete time instants.
ISSN:0012-2661
1608-3083
DOI:10.1134/S00122661200110063