Spectral shift via “lateral” perturbation
We consider a compact perturbation H_0 = S + K_0^* K_0 of a self-adjoint operator S with an eigenvalue \lambda^\circ below its essential spectrum and the corresponding eigenfunction f . The perturbation is assumed to be “along” the eigenfunction f , namely K_0f=0 . The eigenvalue \lambda^\circ belon...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2022-01, Vol.12 (1), p.83-104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a compact perturbation
H_0 = S + K_0^* K_0
of a self-adjoint operator
S
with an eigenvalue
\lambda^\circ
below its essential spectrum and the corresponding eigenfunction
f
. The perturbation is assumed to be “along” the eigenfunction
f
, namely
K_0f=0
. The eigenvalue
\lambda^\circ
belongs to the spectra of both
H_0
and
S
. Let
S
have
\sigma
more eigenvalues below
\lambda^\circ
than
H_0
;
\sigma
is known as the spectral shift at
\lambda^\circ
.
We now allow the perturbation to vary in a suitable operator space and study the continuation of the eigenvalue
\lambda^\circ
in the spectrum of
H(K)=S + K^* K
. We show that the eigenvalue as a function of
K
has a critical point at
K=K_0
and the Morse index of this critical point is the spectral shift
\sigma
. A version of this theorem also holds for some non-positive perturbations. |
---|---|
ISSN: | 1664-039X 1664-0403 |
DOI: | 10.4171/jst/395 |