Sand Blocking Mechanisms and Productivity Analysis of Slant Well in Siltstone Reservoirs

The siltstone reservoir with many small layers of pay zones is usually produced by slant holes. However, severe sand blockages take place when the siltstone reservoir is developed by slant holes. Currently, the sand blocking mechanisms and the effect of sand blocking on productivity of slant well ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geofluids 2021, Vol.2021, p.1-9, Article 6662571
Hauptverfasser: Jia, Peifeng, Cui, Chuanzhi, Zhao, Yizhong, Wang, Xiukun, Sui, Yingfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The siltstone reservoir with many small layers of pay zones is usually produced by slant holes. However, severe sand blockages take place when the siltstone reservoir is developed by slant holes. Currently, the sand blocking mechanisms and the effect of sand blocking on productivity of slant well are still challenges for engineers and scholars. In this paper, based on the existing productivity model of inclined slant wells, the mechanical skin factor, which describes the effect of sand blocking on productivity, is proposed. Meanwhile, many experimental works have been done to investigate the sand blocking mechanisms in siltstone reservoirs. From the experimental work, it is concluded that with the increase of displacement PV number and displacement flow rate, the permeability of sand control system decreases by 40%. When solid particles enter the casing and block the gravel and sand control screen in the annulus, the skin factor increases sharply and the productivity decreases by more than 80%. Through the productivity calculation of multilayer sand control wells, it is considered that larger gravel packing radius can keep particles away from the well bore, which is helpful to ensure oil well productivity. Furthermore, the influence of differential filling radius on the fluid production capacity of each layer of sand control well is analyzed. It is proved that optimizing the filling radius of each layer can improve the production effect of mediate- and low-permeability layers. This method has been applied in Kendong #12 block. The daily oil production rate is increased by 9.61 t/day, and the oil recovery of this block is increased by 2.12%.
ISSN:1468-8115
1468-8123
DOI:10.1155/2021/6662571