Doob equivalence and non-commutative peaking for Markov chains

In this paper, we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize the coincidence of conditional probabilities in terms of (generalized) Doob transforms, which th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of noncommutative geometry 2021-01, Vol.15 (4), p.1469-1484
Hauptverfasser: Chen, Xinxin, Dor-On, Adam, Hui, Langwen, Linden, Christopher, Zhang, Yifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize the coincidence of conditional probabilities in terms of (generalized) Doob transforms, which then leads to a stronger classification result for the associated operator algebras in terms of spectral radius and strong Liouville property. Furthermore, we characterize the non-commutative peak points of the associated operator algebra in a way that allows one to determine them from inspecting the matrix. This leads to a concrete analogue of the maximum modulus principle for computing the norm of operators in the ampliated operator algebras.
ISSN:1661-6952
1661-6960
DOI:10.4171/jncg/444