A tunable B-site doping SBT-BNT-SMN ceramic composite with high recoverable energy density and temperature stability
We synthesize a group of three-phase ferroelectric ceramics 0.35(Sr 0.7 Bi 0.2 ) TiO 3 –0.65(Bi 0.5 Na 0.5 )TiO 3 –xSr(Mg 1/3 Nb 2/3 )O 3 (BST–BNT–xSMN) using conventional solid-phase sintering method. When tunning the volume of SMN to 0.01, the ceramic sheet shows homogeneous microcrystal grains an...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-12, Vol.56 (35), p.19564-19576 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We synthesize a group of three-phase ferroelectric ceramics 0.35(Sr
0.7
Bi
0.2
) TiO
3
–0.65(Bi
0.5
Na
0.5
)TiO
3
–xSr(Mg
1/3
Nb
2/3
)O
3
(BST–BNT–xSMN) using conventional solid-phase sintering method. When tunning the volume of SMN to 0.01, the ceramic sheet shows homogeneous microcrystal grains and highly dense crystal morphology, which favors a reductive dielectric permittivity (
ε
r
) of 2250 and loss of 0.05. Under a high electric field of 100 kV cm
−1
, the BST–BNT-
0.01
SMN sample achieves a slender polarization versus electrical field (P–E) loop with saturation and residual polarization of 37.1 µC cm
−2
and 3.0 µC cm
−2
, respectively, corresponding to a high energy density of 1.32 J cm
−3
and a large
η
of 81%. Strikingly, the BST–BNT–xSMN ceramics show the excellent temperature stability below 100 °C, which facilitates energy storage in relaxed ferroelectric ceramics and provides an efficient method for obtaining pulsed power capacitors with excellent energy-recoverable characteristics and high efficiency in BNT-based ceramics.
Graphical abstract
The three-phase ferroelectric ceramics 0.35(Sr
0.7
Bi
0.2
)TiO
3-
0.65(Bi
0.5
Na
0.5
)TiO
3-
xSr(Mg
1/3
Nb
2/3
)O
3
(BST- BNT- xSMN) possesses a slender polarization versus electrical field loop with saturation and residual polarization of 37.1 µC cm
-2
and 3.0 µC cm
-2
respectively at 100 kV cm
-1
, which corresponds to a high energy density of 1.32 J cm
-3
and a large η of 81%. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-021-06480-2 |