Convexity of balls in outer space

In this paper we study the convexity properties of geodesics and balls in Outer space equipped with the Lipschitz metric. We introduce a class of geodesics called balanced folding paths and show that, for every loop \alpha , the length of \alpha along a balanced folding path is not larger than the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2021-01, Vol.15 (3), p.893-934
Hauptverfasser: Qing, Yulan, Rafi, Kasra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the convexity properties of geodesics and balls in Outer space equipped with the Lipschitz metric. We introduce a class of geodesics called balanced folding paths and show that, for every loop \alpha , the length of \alpha along a balanced folding path is not larger than the maximum of its lengths at the endpoints. This implies that out-going balls are weakly convex. We then show that these results are sharp by providing several counter examples.
ISSN:1661-7207
1661-7215
DOI:10.4171/ggd/615