Generic free subgroups and statistical hyperbolicity
This paper studies the generic behavior of k -tuples of elements for k \geq 2 in a proper group action with contracting elements, with applications toward relatively hyperbolic groups, CAT(0) groups and mapping class groups. For a class of statistically convex-cocompact action, we show that an expon...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2021-01, Vol.15 (1), p.101-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the generic behavior of
k
-tuples of elements for
k \geq 2
in a proper group action with contracting elements, with applications toward relatively hyperbolic groups, CAT(0) groups and mapping class groups. For a class of statistically convex-cocompact action, we show that an exponential generic set of
k
elements for any fixed
k \geq 2
generates a quasi-isometrically embedded free subgroup of rank
k
. For
k = 2
, we study the sprawl property of group actions and establish that statistically convex-cocompact actions are statistically hyperbolic in the sense of M. Duchin, S. Lelièvre, and C. Mooney.
For any proper action with a contracting element, if it satisfies a condition introduced by Dal’bo-Otal-Peigné and has purely exponential growth, we obtain the same results on generic free subgroups and statistical hyperbolicity. |
---|---|
ISSN: | 1661-7207 1661-7215 |
DOI: | 10.4171/ggd/593 |