Plasmon-Acoustic Transducers Based on Graphene–2D Boron Nitride Structures for the Terahertz-Frequency Range

Graphene and 2D hexagonal boron nitride isomorphic to it are promising materials for application in nanoacoustics. Therefore, more detailed study on the possibilities of the development of plasmon-acoustic transducers for nanoacoustics with corresponding numerical estimations of their technical char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2020-12, Vol.54 (13), p.1770-1774
Hauptverfasser: Brazhe, R. A., Dolgov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1774
container_issue 13
container_start_page 1770
container_title Semiconductors (Woodbury, N.Y.)
container_volume 54
creator Brazhe, R. A.
Dolgov, D. A.
description Graphene and 2D hexagonal boron nitride isomorphic to it are promising materials for application in nanoacoustics. Therefore, more detailed study on the possibilities of the development of plasmon-acoustic transducers for nanoacoustics with corresponding numerical estimations of their technical characteristics seems urgent. In this work, the possibility in principle of forming plasmon-acoustic transducers for nanoacoustic devices operating in the terahertz-frequency range is substantiated theoretically and via numerical calculations. A plasmon-acoustic transducer consisting of two subsystems, notably, piezoelectric and plasmon-polariton subsystems, is investigated as the analyzed model. The piezoelectric subsystem is made in the form of a hexagonal boron-nitride nanoribbon—an acoustic duct, the end part of which serves as a piezoelectric transducer exciting elastic waves of the terahertz range. The acoustic duct is overlapped with the plasmon-polariton subsystem in the form of a graphene nanoribbon, in which TM-polarized surface plasmon-polaritons propagate. The introduced electrical impedance of the piezoelectric subsystem and characteristic impedance of the plasmon-polariton subsystem are calculated. It is shown that their values can provide the optimal coordination of a load (the acoustic duct) with the plasmon-polariton waveguide. It is found that graphene nanoplasmonics and nanoacoustics based on piezoelectric planar boron nitride combine well with each other. This opens up broad opportunities for the development of a new class of nanoelectronic devices.
doi_str_mv 10.1134/S1063782620130059
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A650609586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650609586</galeid><sourcerecordid>A650609586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-eeb92f09ccb7b1440975987da4e92ea45dca61192059f1b9da0e5d1fed9ce0803</originalsourceid><addsrcrecordid>eNp9kM9OAjEQxjdGExF9AG99gcVp92-PgIomRI3geVPaWVgCLU53D3jyHXxDn8QSvJmYOczkm_lN8n1RdM1hwHmS3sw45ElRilwATwAyeRL1OEiI87SQp4c5T-LD_jy68H4NwHmZpb3IvmyU3zobD7XrfNtoNidlvek0kmcj5dEwZ9mE1G6FFr8_v8QtGzkK2lPTUmOQzVrqdNsRelY7Yu0K2RxJrZDaj_ie8L1Dq_fsVdklXkZntdp4vPrt_ejt_m4-foinz5PH8XAaa1HINkZcSFGD1HpRLHiagiwyWRZGpSgFqjQzWuWcSxGM1nwhjQLMDK_RSI1QQtKPBse_S7XBqrG1a0npUAa3jXYW6ybowzyDHGRW5gHgR0CT856wrnbUbBXtKw7VIeHqT8KBEUfGh9tgjqq168gGX_9APxRHf40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmon-Acoustic Transducers Based on Graphene–2D Boron Nitride Structures for the Terahertz-Frequency Range</title><source>Springer Nature - Complete Springer Journals</source><creator>Brazhe, R. A. ; Dolgov, D. A.</creator><creatorcontrib>Brazhe, R. A. ; Dolgov, D. A.</creatorcontrib><description>Graphene and 2D hexagonal boron nitride isomorphic to it are promising materials for application in nanoacoustics. Therefore, more detailed study on the possibilities of the development of plasmon-acoustic transducers for nanoacoustics with corresponding numerical estimations of their technical characteristics seems urgent. In this work, the possibility in principle of forming plasmon-acoustic transducers for nanoacoustic devices operating in the terahertz-frequency range is substantiated theoretically and via numerical calculations. A plasmon-acoustic transducer consisting of two subsystems, notably, piezoelectric and plasmon-polariton subsystems, is investigated as the analyzed model. The piezoelectric subsystem is made in the form of a hexagonal boron-nitride nanoribbon—an acoustic duct, the end part of which serves as a piezoelectric transducer exciting elastic waves of the terahertz range. The acoustic duct is overlapped with the plasmon-polariton subsystem in the form of a graphene nanoribbon, in which TM-polarized surface plasmon-polaritons propagate. The introduced electrical impedance of the piezoelectric subsystem and characteristic impedance of the plasmon-polariton subsystem are calculated. It is shown that their values can provide the optimal coordination of a load (the acoustic duct) with the plasmon-polariton waveguide. It is found that graphene nanoplasmonics and nanoacoustics based on piezoelectric planar boron nitride combine well with each other. This opens up broad opportunities for the development of a new class of nanoelectronic devices.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782620130059</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boron nitride ; Electric properties ; Electronics Materials ; Graphene ; Graphite ; Magnetic Materials ; Magnetism ; Physics ; Physics and Astronomy ; Waveguides</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2020-12, Vol.54 (13), p.1770-1774</ispartof><rights>Pleiades Publishing, Ltd. 2020. ISSN 1063-7826, Semiconductors, 2020, Vol. 54, No. 13, pp. 1770–1774. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2020, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Elektronika, 2020, Vol. 25, No. 2, pp. 145–154.</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-eeb92f09ccb7b1440975987da4e92ea45dca61192059f1b9da0e5d1fed9ce0803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782620130059$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782620130059$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Brazhe, R. A.</creatorcontrib><creatorcontrib>Dolgov, D. A.</creatorcontrib><title>Plasmon-Acoustic Transducers Based on Graphene–2D Boron Nitride Structures for the Terahertz-Frequency Range</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Graphene and 2D hexagonal boron nitride isomorphic to it are promising materials for application in nanoacoustics. Therefore, more detailed study on the possibilities of the development of plasmon-acoustic transducers for nanoacoustics with corresponding numerical estimations of their technical characteristics seems urgent. In this work, the possibility in principle of forming plasmon-acoustic transducers for nanoacoustic devices operating in the terahertz-frequency range is substantiated theoretically and via numerical calculations. A plasmon-acoustic transducer consisting of two subsystems, notably, piezoelectric and plasmon-polariton subsystems, is investigated as the analyzed model. The piezoelectric subsystem is made in the form of a hexagonal boron-nitride nanoribbon—an acoustic duct, the end part of which serves as a piezoelectric transducer exciting elastic waves of the terahertz range. The acoustic duct is overlapped with the plasmon-polariton subsystem in the form of a graphene nanoribbon, in which TM-polarized surface plasmon-polaritons propagate. The introduced electrical impedance of the piezoelectric subsystem and characteristic impedance of the plasmon-polariton subsystem are calculated. It is shown that their values can provide the optimal coordination of a load (the acoustic duct) with the plasmon-polariton waveguide. It is found that graphene nanoplasmonics and nanoacoustics based on piezoelectric planar boron nitride combine well with each other. This opens up broad opportunities for the development of a new class of nanoelectronic devices.</description><subject>Boron nitride</subject><subject>Electric properties</subject><subject>Electronics Materials</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Waveguides</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAjEQxjdGExF9AG99gcVp92-PgIomRI3geVPaWVgCLU53D3jyHXxDn8QSvJmYOczkm_lN8n1RdM1hwHmS3sw45ElRilwATwAyeRL1OEiI87SQp4c5T-LD_jy68H4NwHmZpb3IvmyU3zobD7XrfNtoNidlvek0kmcj5dEwZ9mE1G6FFr8_v8QtGzkK2lPTUmOQzVrqdNsRelY7Yu0K2RxJrZDaj_ie8L1Dq_fsVdklXkZntdp4vPrt_ejt_m4-foinz5PH8XAaa1HINkZcSFGD1HpRLHiagiwyWRZGpSgFqjQzWuWcSxGM1nwhjQLMDK_RSI1QQtKPBse_S7XBqrG1a0npUAa3jXYW6ybowzyDHGRW5gHgR0CT856wrnbUbBXtKw7VIeHqT8KBEUfGh9tgjqq168gGX_9APxRHf40</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Brazhe, R. A.</creator><creator>Dolgov, D. A.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Plasmon-Acoustic Transducers Based on Graphene–2D Boron Nitride Structures for the Terahertz-Frequency Range</title><author>Brazhe, R. A. ; Dolgov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-eeb92f09ccb7b1440975987da4e92ea45dca61192059f1b9da0e5d1fed9ce0803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boron nitride</topic><topic>Electric properties</topic><topic>Electronics Materials</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brazhe, R. A.</creatorcontrib><creatorcontrib>Dolgov, D. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brazhe, R. A.</au><au>Dolgov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon-Acoustic Transducers Based on Graphene–2D Boron Nitride Structures for the Terahertz-Frequency Range</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>54</volume><issue>13</issue><spage>1770</spage><epage>1774</epage><pages>1770-1774</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Graphene and 2D hexagonal boron nitride isomorphic to it are promising materials for application in nanoacoustics. Therefore, more detailed study on the possibilities of the development of plasmon-acoustic transducers for nanoacoustics with corresponding numerical estimations of their technical characteristics seems urgent. In this work, the possibility in principle of forming plasmon-acoustic transducers for nanoacoustic devices operating in the terahertz-frequency range is substantiated theoretically and via numerical calculations. A plasmon-acoustic transducer consisting of two subsystems, notably, piezoelectric and plasmon-polariton subsystems, is investigated as the analyzed model. The piezoelectric subsystem is made in the form of a hexagonal boron-nitride nanoribbon—an acoustic duct, the end part of which serves as a piezoelectric transducer exciting elastic waves of the terahertz range. The acoustic duct is overlapped with the plasmon-polariton subsystem in the form of a graphene nanoribbon, in which TM-polarized surface plasmon-polaritons propagate. The introduced electrical impedance of the piezoelectric subsystem and characteristic impedance of the plasmon-polariton subsystem are calculated. It is shown that their values can provide the optimal coordination of a load (the acoustic duct) with the plasmon-polariton waveguide. It is found that graphene nanoplasmonics and nanoacoustics based on piezoelectric planar boron nitride combine well with each other. This opens up broad opportunities for the development of a new class of nanoelectronic devices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782620130059</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2020-12, Vol.54 (13), p.1770-1774
issn 1063-7826
1090-6479
language eng
recordid cdi_gale_infotracacademiconefile_A650609586
source Springer Nature - Complete Springer Journals
subjects Boron nitride
Electric properties
Electronics Materials
Graphene
Graphite
Magnetic Materials
Magnetism
Physics
Physics and Astronomy
Waveguides
title Plasmon-Acoustic Transducers Based on Graphene–2D Boron Nitride Structures for the Terahertz-Frequency Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon-Acoustic%20Transducers%20Based%20on%20Graphene%E2%80%932D%20Boron%20Nitride%20Structures%20for%20the%20Terahertz-Frequency%20Range&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Brazhe,%20R.%20A.&rft.date=2020-12-01&rft.volume=54&rft.issue=13&rft.spage=1770&rft.epage=1774&rft.pages=1770-1774&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782620130059&rft_dat=%3Cgale_cross%3EA650609586%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A650609586&rfr_iscdi=true