simplePHENOTYPES: SIMulation of pleiotropic, linked and epistatic phenotypes

BackgroundAdvances in genotyping and phenotyping techniques have enabled the acquisition of a great amount of data. Consequently, there is an interest in multivariate statistical analyses that identify genomic regions likely to contain causal mutations affecting multiple traits (i.e., pleiotropy). A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2020-10, Vol.21 (1), p.1-491, Article 491
Hauptverfasser: Fernandes, Samuel B., Lipka, Alexander E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BackgroundAdvances in genotyping and phenotyping techniques have enabled the acquisition of a great amount of data. Consequently, there is an interest in multivariate statistical analyses that identify genomic regions likely to contain causal mutations affecting multiple traits (i.e., pleiotropy). As the demand for multivariate analyses increases, it is imperative that optimal tools are available to assess their performance. To facilitate the testing and validation of these multivariate approaches, we developed simplePHENOTYPES, an R/CRAN package that simulates pleiotropy, partial pleiotropy, and spurious pleiotropy in a wide range of genetic architectures, including additive, dominance and epistatic models.ResultsWe illustrate simplePHENOTYPES' ability to simulate thousands of phenotypes in less than one minute. We then provide two vignettes illustrating how to simulate sets of correlated traits in simplePHENOTYPES. Finally, we demonstrate the use of results from simplePHENOTYPES in a standard GWAS software, as well as the equivalence of simulated phenotypes from simplePHENOTYPES and other packages with similar capabilities.ConclusionssimplePHENOTYPES is a R/CRAN package that makes it possible to simulate multiple traits controlled by loci with varying degrees of pleiotropy. Its ability to interface with both commonly-used marker data formats and downstream quantitative genetics software and packages should facilitate a rigorous assessment of both existing and emerging statistical GWAS and GS approaches. simplePHENOTYPES is also available at https://github.com/samuelbfernandes/simplePHENOTYPES.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-020-03804-y